LA SOJA: VALOR DIETÉTICO Y NUTRICIONAL

Curso: EQUI LI BRI O ALI MENTARI O EN LOS ESCOLARES

AUTORA: Diodora Calvo Aldea

Mayo, 2003
INDICE

INDICE .................................................................................................................. 2
0. INTRODUCCIÓN ................................................................................................. 3
1. FICHA BOTÁNICA ............................................................................................... 4
2. CULTIVO DE LA SOJA A NIVEL MUNDIAL .................................................... 5
3. CONTENIDO EN NUTRIENTES DE LA SOJA ..................................................... 7
   A) Contenido en nutrientes de la legumbre ....................................................... 7
   B) Contenido en nutrientes del aceite de soja .................................................... 9
4. PRODUCTOS DERIVADOS DE LA SOJA ......................................................... 12
   • Semillas ........................................................................................................... 12
   • Aceite .............................................................................................................. 13
   • Harina ............................................................................................................. 13
   • Leche de soja .................................................................................................. 14
   • Okara ............................................................................................................. 15
   • Tofú ................................................................................................................ 15
   • Brotes de soja ............................................................................................... 16
   • Sojas vegetales Verdes (edamamé) .............................................................. 18
   • Lecitina ............................................................................................................ 18
   • Miso ............................................................................................................... 20
   • Salsa de soja .................................................................................................. 21
   • Tempeh .......................................................................................................... 22
   • Soja texturizada ............................................................................................. 23
   • Natto ............................................................................................................... 24
   • Soynuts .......................................................................................................... 24
   • Mantequilla de soynut .................................................................................. 25
5. LAS VIRTUDES DIETÉTICAS DE LA SOJA .................................................... 25
   A) Acción de la lecitina ...................................................................................... 26
   B) Acción de las isoflavonas .......................................................................... 27
   C) Recomendaciones de empleo ..................................................................... 32
   D) Efectos Adversos y/o Tóxicos .................................................................... 33
6. COMENTARIOS ................................................................................................. 34
   • En resumen ................................................................................................... 39
7. BIBLIOGRAFÍA .................................................................................................... 40
0. INTRODUCCIÓN

La elección del presente tema ha sido debida a la curiosidad que suscita, a nivel social, el consumo de soja, tanto como fuente de alimentación o como para combatir determinadas enfermedades.

Son tantas las virtudes que se le atribuyen a esta legumbre, que se hace necesario investigar en las fuentes más recientes, con el fin de comprobar si dichas virtudes son fidedignas y están basadas en experimentos científicos llevados a cabo por expertos en Dietética y Nutrición o, por el contrario, si se le atribuyen cualidades milagrosas que aún no han sido demostradas.

Por todo ello, el trabajo realizado por la autora es fruto de un amplio trabajo de investigación bibliográfica, en incontables fuentes de internet y en arduo trabajo de elaboración que se ha prolongado durante un periodo temporal de dos meses y medio.

El objetivo que se persigue es ante todo didáctico, tanto para emplearlo en las clases de ESO y Bachillerato, como para divulgarlo a todos los usuarios, alumnado, profesorado y particulares, a través del siguiente portal de internet:

http://WWW.Diodora.com

Aparte de la finalidad didáctica, existe en el citado portal un “foro de discusión” en el que se irán recogiendo las sugerencias de todas las personas que participen en el mismo. Además, se irán incorporando todas las novedades que vayan surgiendo respecto a este tema y que sean avaladas por la comunidad científica.
1. FICHA BOTÁNICA

Nombres Populares: soya, soya, soja (Port, Fr), soya (Ingl), soia (Ital), sojabohne (Alem).

Ficha científica: La soja (Glycine max L.) es una planta de la Familia: Papilionáceas (Fabáceas).

La soja es una planta herbácea de ciclo anual, de porte erguido y de 0,5 a 1,5 metros de altura. Posee unas hojas grandes, trifoliadas y pubescentes. Sus flores, de pequeño tamaño, son de un color blanco-amarillento o azul-violáceo y se encuentran agrupadas en inflorescencias, situadas en las axilas de las hojas.

Su legumbre posee unas cortas vainas, cada una de las cuales contiene de una a cuatro semillas oleaginosas (con un 20% de aceite) y esféricas. El color
de las mismas es variable: amarillo o negro, aunque existen otras especies con semillas de color verde o castaño.

Al igual que el resto de los miembros de la familia de las leguminosas, la soja es capaz de capturar todo el nitrógeno que necesita, ya que posee nódulos en los que se desarrollan bacterias fijadoras del nitrógeno atmosférico (Rhizobium japonicum).

2. CULTIVO DE LA SOJA A NIVEL MUNDIAL

Esta planta es originaria de este de China, Japón y Corea y constituye la base de alimentación de muchas poblaciones asiáticas desde los tiempos en los que se levantó la muralla China (2939 a.C.).

También se conocen datos muy antiguos sobre su empleo como alimento adecuado para hacer frente a las largas expediciones y para suplir la escasez de otros productos en determinadas épocas del año.

Su importancia radica en que, además de barato, la soja es un cultivo de un elevado poder nutritivo y de gran contenido proteico, de ahí que los chinos la llamen carne sin huesos.

En el Siglo XVIII fue introducida en Europa y América y, en la actualidad, de todas las plantas oleaginosas, el cultivo de la soja es el que más se ha extendido por todas las regiones templadas del Planeta. Concretamente, la soja se utilizó para compensar la escasez de víveres que padecieron mucho países occidentales durante la Segunda Guerra mundial.

Según la Organización Mundial para la Agricultura y la Alimentación (FAO), en el año 2001, la superficie cultivada de soja a nivel mundial abarcó un total de 76,3 millones de hectáreas, de las que obtuvieron 177,3 millones de toneladas de producción.

<table>
<thead>
<tr>
<th>AÑO</th>
<th>SUPERFICIE CULTIVADA (millones de ha)</th>
<th>PRODUCCIÓN (millones de tm)</th>
<th>CONSUMO (millones de tm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>63</td>
<td>127</td>
<td>104</td>
</tr>
<tr>
<td>1996</td>
<td>61</td>
<td>130</td>
<td>104</td>
</tr>
<tr>
<td>1997</td>
<td>67</td>
<td>144</td>
<td>112</td>
</tr>
<tr>
<td>1998</td>
<td>71</td>
<td>160</td>
<td>114</td>
</tr>
<tr>
<td>1999</td>
<td>72</td>
<td>158</td>
<td>124</td>
</tr>
<tr>
<td>2000</td>
<td>74</td>
<td>161</td>
<td>136</td>
</tr>
<tr>
<td>2001</td>
<td>76</td>
<td>177</td>
<td>137</td>
</tr>
</tbody>
</table>

Tabla 1: Superficie, producción y consumo mundial de Soja - Periodo 1995 / 2001 (Fuente: FAOSTATIC y Anuario Estadístico de la Bolsa de Cereales)

En la actualidad, EEUU es su principal productor con unos 65 millones de tm, lo que supone casi el 50% del consumo total anual. Le siguen otros países con una producción importante, como Brasil (23 millones de tm/ año), China (13
millones de tm/año) y Argentina (13 millones de tm/año). En Taiwan, Canadá y la India constituye también un cultivo relevante aunque no lleguen a la cifra de producción de los anteriores.

En Europa, aunque su consumo es elevado, sobre todo para la fabricación de piensos compuestos. Sin embargo, su cultivo es escaso por dos motivos: por las escasas precipitaciones (en la Europa Mediterránea) o por las bajas temperaturas (en la Europa del Norte).

3. CONTENIDO EN NUTRIENTES DE LA SOJA

Básicamente, la soja se consume directamente en forma de dos productos: semillas y aceite. Además, estos se pueden utilizar como materia prima para obtener una gran variedad de subproductos.

Vamos a analizar el valor dietético de cada uno de estos dos productos:

A) Contenido en nutrientes de la legumbre
(por cada 100 g)

- Energía: 422 Kcal
- Proteínas: 35 g
- Carbohidratos: 30 g
- Fibra alimentaria: 5 g (cocidas)
- Lípidos totales: 18 g
- Colesterol: 0 mg
- Sodio: 5 mg
- Potasio: 1700 mg
- Calcio: 280 mg
- Magnesio: 240 mg
- Hierro: 8 mg
- Zinc: 3 mg
- Fósforo: 580 mg
- Yodo: 6 µg
- Flúor: 130 µg
- Cobre: 406 µg
- Tiamina (B1): 0,85 mg
- Riboflavina (B2): 0,4 mg
- Ácido Nicotínico: 5 mg
• **Valor nutricional en comparación con otras legumbres**

En comparación con las legumbres de consumo más frecuente en nuestro país, garbanzos, lentejas, judías y guisantes, las semilla de soja posee un elevado valor nutritivo:

- Contiene la mitad de hidratos de carbono (30 g) frente a las demás legumbres (garbanzos= 61 g, lentejas= 56 g, judías= 60 g y guisantes secos= 56 g).

- Es más rica en proteínas (35 g) en comparación con el resto (garbanzos= 18 g, lentejas= 24 g, judías= 19 g y guisantes secos= 21,6 g) y éstas son de más alta calidad.

A diferencia de las otras legumbres, que carecen el aminoácido lisina, en la soja se encuentran los ocho aminoácidos esenciales y, aunque es un poco deficitaria en metionina, este problema se puede paliar si se consume conjuntamente con otros alimentos que la complementen, como huevos, leche, arroz o trigo.

Con el fin de aumentar su valor proteico, se recomienda que se sometan a un proceso de cocción a temperaturas superiores a 60 ºC; de esa forma se destruye una sustancia que contiene y que actúa como inhibidor de los enzimas encargados de la digestión de las proteínas.

- Contiene minerales: Ca, P, Fe, Mg, Zn y K. Tiene un bajo contenido en Na, por lo que resulta ideal para las personas hipertensas.
- Es rica en ácidos grasos, no contiene colesterol y ni, prácticamente, grasas saturadas. Su contenido en lípidos es de entre un 15 a un 20%, mayoritariamente insaturados (oleico y linoleico).

- De forma similar a los huevos, contiene de 1-5% de lecitina, grupo de fosfolípidos capaces de provocar la emulsión de las grasas, lo que facilita su disolución en agua y acelera su metabolismo, evitando así la formación de depósitos de grasa en las paredes de las arterias.

- Contiene alrededor de 0,2-0,3 g de isoflavonas, fenoles heterocíclicos de estructuras molecular próxima a la del estradiol. Los fitoestrógenos que contiene a soja son la dadzeina y la genisteína. Parece que ambos aumentan la producción de hormonas femeninas y, además, previenen la aparición de ciertos tumores.

- Posee también una gran cantidad de vitaminas del grupo B, sobre todo riboflavina, y las vitaminas E y K. En la semilla verde se encuentran también vitaminas A, D y C.

- Su contenido en fibra dietética es elevado (4,5 % del peso de las semillas), lo que reduce la absorción de los hidratos de carbono contenidos en ella y facilita el tránsito intestinal.

**B) Contenido en nutrientes del aceite de soja**

(por cada 100 g)

- Energía: 900 Kcal
- Proteínas: 0 g
- Carbohidratos: 0 g
- Fibra alimentaria: 0 g (cocidas)
- Lípidos totales: 100 g
- Ácidos grasos saturados: 14,3 g (0,15 de C14:0, 10,2 de C16:0 y 3,7 de C18:0)
- Ácidos grasos monoinsaturados: 22 g (0,3 de C16:1 y 21,8 de C18:1)
- Ácidos grasos poliinsaturados: 55 g (48,5 de C18:2 y 6,4 de C13:3)
- Colesterol: 0 mg
- Sodio: 0 mg
- Potasio: 0 mg
- Calcio: 0 mg
- Magnesio: 0 mg
- Hierro: 0 mg
- Zinc: 0 mg
- Fósforo: 0 mg
- Yodo: 0 µg
- Cobre: 0 µg
- Vitamina D: 0 µg
- Vitamina C: 0 mg
- Tiamina (B1): 0 mg
- Riboflavina (B2): 0 mg
- Ácido Nicotínico: 0 mg
- Piridoxina (B6): 0 mg
- Cianocobalamina (B12): 0 µg
- Ácido fólico: 0 µg

Figura . Composición en ácidos grasos de las distintas grasas y aceites de uso en la alimentación (Fuente: Mataix y Carazo, Ed. Díaz Santos, S.A. Nutrición Para Educadores; página 227)
Valor nutricional en comparación con otros aceites

Vamos a comparar el valor nutricional del aceite de soja con el de girasol y otro que es el más usado en nuestro país: el aceite de oliva.

Es similar en cuanto al rendimiento calórico (900Kcal) y, al igual que los otros dos, el aceite de soja no contiene ni proteínas ni carbohidratos ni colesterol.

- El contenido en lípidos totales es similar en los tres aceites. Sin embargo, a diferencia de las grasas animales o del aceite de coco, su contenido en ácidos grasos saturados es relativamente bajo: 14,3 g en el aceite de soja; 14,0 g, en el de oliva; y 9 g en el de girasol (9 g). Siendo este último el que posee una menor cantidad.

Respecto a los ácidos grasos monoinsaturados, el aceite de soja (22 g) supera al de girasol (20 g) pero su cifra es significativamente inferior en comparación con el aceite de oliva (72 g).

Y en relación con los ácidos grasos poliinsaturados, cuyo contenido es de 55 g, supera con mucha diferencia a nuestro aceite de oliva (9,2 g); sin embargo, su cifra es algo inferior a la del aceite de girasol (62,8 g).

La elevada proporción de ácidos grasos poliinsaturados respecto a los monoinsaturados presentes tanto en el aceite de soja como en el de girasol, da lugar a un inconveniente en cuanto a su uso, ya que acelera el proceso de deterioro por enrranciamiento de estos aceites, en comparación con el de oliva que, al tener una mayor cantidad de ácidos grasos monoinsaturados, unido a otros agentes antioxidantes, como la vitamina E y compuestos fenólicos, es más resistente que los otros dos frente a dicho deterioro.
Otra ventaja del aceite de oliva respecto a los otros dos, es que penetra peor en el interior de los alimentos durante la fritura, lo que hace que, a diferencia de ellos, no aumente el valor calórico del alimento cocinado, ni cambie su sabor.

4. PRODUCTOS DERIVADOS DE LA SOJA

Como describimos con anterioridad, los dos productos de mayor consumo de la soja son la legumbre y el aceite. En nuestro país, es cada día más frecuente, consumirla en forma de brotes para ensaladas.

No obstante, a nivel mundial, en el mercado de la soja se oferta una gran variedad de productos, tanto destinados al consumo humano como empleados en el enriquecimiento de los piensos compuestos de uso animal. De entre todos ellos, destacamos los que describimos a continuación.

- **Semillas**

Al igual que nuestras legumbres, se consumen hervidas, tras pasar unas ocho horas en remojo. La mayoría se transforma en productos alimenticios derivados de la soja (soyfoods).
• **Aceite**
Se obtiene del prensado de las semillas. Es una excelente fuente de lecitina, conteniendo además una mezcla de glicéridos de ácidos poliinsaturados: linoleico, oleico y linolénico (86%) y saturados: palmítico y esteárico (14%) y no tiene colesterol.

El aceite de soja se puede emplear como tal para frituras o para consumirlo crudo en el aliño de las ensaladas. Sin embargo, la mayor parte del mismo se suele procesar y transformar en margarina, mayonesa y otros productos comestibles. También se destina a la fabricación de pinturas, barnices, linóleo y tejidos de caucho. En los medicamentos se suele emplear como excipiente.

• **Harina**
Polvo fino que se obtiene tras el tostado y molido de las semillas. Casi no contiene almidón, por lo que se usa para la fabricación de productos dietéticos. También se emplea en forma de tortas para enriquecer en proteínas los piensos animales.

Contiene un 50% de proteínas, por lo que esta riqueza protéica la hace idónea en las dietas destinadas al consumo humano, siendo la principal fuente de proteínas en los países con un déficit de las mismas. Además, se emplea para enriquecer el contenido proteico de cualquier receta.

Si se añade a otras harinas obtenidas a partir de cereales, mejora el valor nutricional de las mismas al compensar su déficit en el aminoácido lisina. También se suele emplear en las tortillas, como sustituto del huevo. Su contenido en lecitina es elevado (100 g de harina tiene más lecitina que media docena de huevos).
La leche de soja es un líquido de consistencia cremosa y de sabor que recuerda al de las nueces.

Se obtiene de las semillas de soja empapadas en agua, cocidas y, posteriormente, molidas y coladas. El líquido resultante es la leche de soja y la parte sólida que queda tras el proceso de colado es la okara.

Puede sustituir a la leche de la vaca en pacientes con intolerancia a la lactosa (que carecen de la enzima lactasa).

No contiene colesterol, aporta calcio, vitaminas del grupo B y Fe. Sin embargo, esta leche no aporta la misma cantidad de proteínas que la que aporta la leche de vaca.

Se comercializa en estado líquido y como leche en polvo.
• **Okara**

Es un subproducto de la fibra resultante de la pulpa de la leche de soja, por lo que resulta una buena fuente de fibra dietética, que puede emplearse en la fabricación de panes. Sin embargo, su riqueza en proteínas es mucho menor que la de la leche de soja.

• **Tofú**

Especie de queso fresco de textura cremosa que se obtiene a partir de la leche de soja cuajada con sales de calcio y magnesio y, posteriormente, prensada con el fin de retirar el suero.

Se suele tomar tal cual o transformado en yogurt. También puede emplearse como sustituto de la carne o para hacer patés y salsas.
- Es bajo en calorías (85 Kcal) y carbohidratos.
- Contiene unos 5 g de lípidos, sobre todo ácidos grasos poliinsaturados, como el linoléico, que no puede ser sintetizado por nuestro organismo, por lo que actúa rebajando los niveles sanguíneos de colesterol.
- Tiene un 0% de colesterol.
- Contiene unos 26 mg de isoflavonas.
- Contiene una elevada cantidad de proteínas (20 g). Es especialmente rico en el aminoácido lisina aunque un poco deficitario en metionina, por lo que se recomienda acompañarlo de cereales que lo complementen.
- Tiene P, vitaminas de grupo B y fibra dietética. Además, su contenido en calcio (159 mg), aportado por las sales empleadas en su proceso de cuajado, supera al de la leche de vaca.
- Contiene poco Na, por lo que resulta adecuado en los tratamientos contra la hipertensión.

- **Brotes de soja**

**Contenido en nutrientes de los brotes de soja** (por cada 100 g):
- Energía: 50 Kcal
- Proteínas: 5,53 g
- Carbohidratos: 4,68 g
- Fibra alimentaria: 2,38 g
- Lípidos totales: 1,03 g
- Colesterol: 0 mg
- Sodio: 30 mg
- Potasio: 235 mg
- Calcio: 32 mg
- Magnesio: 18,5 mg
- Hierro: 0,9 mg
- Zinc: 0,96 mg
- Fósforo: 74,64 mg
- Cobre: 230 µg
- Vitamina A (retinol): 4 µg eq
- Vitamina C: 19,63 mg
- Tiamina (B1): 0,16 mg
- Riboflavina (B2): 0,16 mg
- Ácido Nicotínico: 1,53 mg
- Piridoxina (B6): 0,16 mg
- Ácido fólico: 160 µg

Los brotes de soja aportan una menor cantidad de energía que las semillas y sobre todo que el aceite de soja.

A diferencia del aceite, los brotes contienen proteínas, carbohidratos y fibra aunque en menor cantidad que las semillas.

Respecto a su cantidad de lípidos, su cifra es muy inferior a la de los otros dos productos. Y, al igual que aquellos, los brotes no contienen colesterol.

Durante el proceso de germinación de las semillas aumentan su contenido en isoflavonas.

A diferencia del aceite, los brotes de soja contienen minerales. En comparación con la semilla, los brotes contienen más cantidad de Na. Sin embargo, son más pobres en P, K, Ca, Mg, Fe, Zn, I, F y Cu. A pesar de ello, los minerales que posee son más aprovechables para el organismo, ya que se encuentran disueltos en el agua empleada en la hidratación de la semilla.

Son ricas en vitaminas A, C, ácido nicotínico, B6 y ácido fólico.
• **Sojas vegetales Verdes (edamamé)**

Estas sojas grandes se cosechan cuando las habas siguen siendo verdes y pueden ser servidas como un bocado o plato vegetal principal, después de hervir en agua levemente salada durante 15-20 minutos. Tienen un alto contenido en proteínas y fibra y no contienen ningún colesterol.

• **Lecitina**
La lecitina es un producto extraído del aceite de soja, que se suele comercializar en forma de granulado. Se encuentra también en los cereales integrales, en el aceite de oliva obtenido por presión en frío, en las vísceras, en los huevos y en todas las células de nuestro organismo. Estructuralmente, es un complejo de fosfolípidos obtenidos a partir del aceite de soja, conformada básicamente por fosfatidil-colina, fosfatidil-etanolamina y fosfatidil-inositol.

Se usa como emulsionante en productos de panadería y bollería, que llevan grasas y aceites. También se emplea como estabilizante y antioxidante alimentario.

Al ser capaz de emulsionar las grasas, se ha demostrado que la lecitina es capaz de acelerar el trasporte de colesterol sanguíneo y su metabolismo y, por tanto, de reducir el riesgo de la formación de las placas de ateroma. También resulta muy útil para la conformación de las membranas celulares, en especial en cerebro, corazón, riñones, médula ósea e hígado.

Además, aporta vitamina E que es un potente antioxidante, por lo que protege contra el envejecimiento celular.

Se consume en solitario o añadida a las ensaladas y guisos. No deben consumirla las personas con ácido úrico elevado, con gastritis, úlceras, diarreas u otros problemas intestinales.
**Miso**

Pasta de soja salada, arroz, cebada y sal, que ha sido y fermentada en presencia de una bacteria (el koji), encerrada en tinas de roble durante unos 3 años.

Se usa como condimento característico de una variedad de alimentos propios de la cocina japonesa: sopsas, salsas, adobos y patés.

Es una excelente fuente de proteínas (21 g) y vitaminas A, B y D.

Al igual que los yogures, los fermentos que contiene hacen del miso un alimento de digestión es sencilla y favorece la flora intestinal.

Otra virtud que se le ha atribuido al miso es la de liberar al cuerpo de la bioacumulación de ciertos metales pesados (como el plomo) y de la acción de
las radiaciones nucleares, por lo que se usó abundantemente tras el desastre de Hiroshima.

- **Salsa de soja**

  Líquido marrón oscuro elaborado a partir de soja fermentada durante un año y medio bajo la acción de un hongo (Aspergillus oryzae).

  Por su sabor salado, se utiliza en los aliños como sustituto de la sal en dietas bajas en sodio. Existen tres tipos de salsas: **shoyu** (mezcla de sojas y trigo), **tamari** (hecha de soja y de subproductos de la elaboración del miso) y **teriyaki** (más fuerte que las otras porque incluye ingredientes como azúcar, vinagre y especias).
- **Tempeh**

Es una especie de torta salada y esponjosa de textura parecida a la de las setas.

Producto indonesio obtenido por la fermentación, durante 1 día, de las semillas de soja mezcladas con arroz o mijo. Esta transformación es debida a la acción de un hongo (*Rhizopus oligosporus*).

Se puede usar como sustituto de la carne o consumir crudo o frito, rebozado, o a la plancha.

Su valor nutricional es similar al del tofu, aunque contiene más fibra dietética. Como consecuencia del proceso de fermentación, se eleva de su contenido en proteínas (19,5 g), calcio, hierro y vitamina B12 (el triple que la leche de vaca) y, a la vez, se destruye el ácido fítico que contenía, sustancia que impide la absorción intestinal de ciertos minerales (Ca, Fe y Zn).

Al contener fermentos, resulta muy digestivo porque es favorable para la flora intestinal.
Su contenido en grasas es muy bajo (7,5 g), casi todas ellas insaturadas.

- **Soja texturizada**

Se obtiene de la harina de soja deshidratada. Antes de usarla hay que dejar que se hinche en agua. Es muy rica en proteínas (cerca de un 70%) y fibra dietética. A la vez, es pobre en grasas, por lo que se emplea como sustituto de la carne picada.

A modo de curiosidad incluimos la siguiente receta:

**Bistec de soja** (recomendado para dietas con poca grasa)
- 2 tazas de soja texturizada (hidratada)
- 2 tazas de trigo molido
- 1 huevo o sustituto
- 1 taza de patata cocida y molida
- Sal al gusto.

**Preparación:**
- Hidratar la soja, poniéndola 5 minutos en un litro de agua hirviendo.
- Colar la soja, poniendo un papel absorbente en el fondo del colador y recoger la masa formada.
- Poner en un tazón y añadir el resto de los ingredientes, remover para mezclarlos.
- Formar bolitas y aplastarlas entre dos plásticos.
- Freir en aceite.
- Se debe servir acompañado de ensalada de tomate, lechuga y cebolla.
• **Natto**

Se hace de sojas enteras fermentadas y cocinadas. En el proceso de fermentación se descomponen las proteínas complejas y se digiere con mayor facilidad que aquellas. Tiene una superficie pegajosa y se sirve tradicionalmente como aderezo del arroz, en sopas del miso.

• **Soynuts**

Son las sojas enteras que se han empapado en agua y después se han cocido al horno hasta que se tuestan. Su textura y sabor es similar a la de los cacahuetes. Los hay de una gran variedad de sabores, incluyendo los de chocolate-cubierto.
- **Mantequilla de soynut**
  Hecho de asado de soynuts enteros, machacados y mezclados con aceite de soja. Tienen un gusto que recuerda al de la nuez y su textura es más ligera que la de la margarina de cacahuete.

5. **LAS VIRTUDES DIETÉTICAS DE LA SOJA**

En general, son muy numerosos los trabajos que, tras años de experiencia, ponen en evidencia los beneficios de la ingesta de leguminosas: garbanzos, judías, lentejas y soja. Dichos alimentos provocan un **descenso de los niveles de glucemia**, porque contienen carbohidratos de digestión lenta, lo que evita los aumentos bruscos de los niveles de glucosa en sangre, como los que afectan a los diabéticos (Jenkins D. et al., 1984; Olguín M. et al., 1995).

Dicho efecto se ve acentuado porque, por su elevado contenido en fibra dietética, los carbohidratos se absorben peor a través de las paredes del intestino.

Además de su efecto hipoglucémico, existen otras sustancias contenidas en la soja a las que se le atribuyen propiedades muy beneficiosas para la salud, tanto a nivel preventivo como a nivel curativo. De entre todas ellas, destacan dos: la lecitina y las isoflavonas.

De ambas sustancias, vamos a describir solamente las propiedades terapéuticas que han sido avaladas mediante la experimentación científica, llevada a cabo por numerosos especialistas en Dietética y Nutrición.

Sin embargo, se atribuyen a la soja muchas otras propiedades, a las que aún les queda un largo camino experimental por recorrer para que puedan ser avaladas científicamente sus cualidades terapéuticas.
**A) Acción de la lecitina**

Tras su llegada al intestino, los fosfolípidos de la lecitina se degradan. La fosfatidil-colina es absorbida mayoritariamente a través del sistema linfático. Una pequeña parte de la misma pasa hacia el torrente sanguíneo y se dirige al hígado, donde es utilizada para la síntesis de ácidos grasos, colina y glicerina-3-P.

En plasma, la fosfatidil-colina y otros fosfoglicéridos transcurren ligados a albúmina y/o lipoproteínas. Posteriormente, son degradados por la acción de las fosfolipasas en ácidos grasos, colina y metabolitos glicerinados, que luego vuelven a ser sintetizados en hígado y en otros órganos (Blumenthal M. et al., 1998).

- **Prevención de las patologías cardiovasculares**

La principal enfermedad cardiaca coronaria (CHD) constituye la principal causa de mortalidad en los países occidentales y está aumentando rápidamente en los países en vías de desarrollo.

Existen muchos factores de riesgo, tales como tabaquismo, hipertensión, obesidad o el elevado cociente entre el colesterol malo (LDL) y el colesterol bueno (HDL); entre otros.

La es la causa principal de la muerte en la mayoría de los países desarrollados

- **HDL** (lipoproteínas de alta densidad) o colesterol bueno. Su papel es retirar el colesterol de la sangre y transportarlo hacia el hígado. Eleva sus índice la ingesta de lípidos monoinsaturados y poliinsaturados.

- **LDL** (lipoproteínas de baja densidad) o colesterol malo. Su presencia en la sangre está relacionada con el depósito de colesterol en las paredes de las
arterias, formando una placa de ateroma. Eleva sus índices la ingesta de lípidos saturados.

- El riesgo de cardiopatías aumenta cuando lo hace la relación LDL/HDL. Así, se considera factor de riesgo cuando el LDL es superior a 100 mg/dl de sangre y el HDL es inferior a los 40 mg/dl de sangre.

  La cantidad de ácidos grasos monoinsaturados y poliinsaturados presentes en la lecitina, provocan una disminución de los niveles de colesterol porque, por un lado, elevan la concentración de las HDL y, por otro, debido a su bajo contenido en ácidos grasos saturados, reducen la concentración de las LDL presentes en la sangre. La elevación de las HDL junto con la reducción de las LDL contribuye a un disminución del cociente entre ambas y, por tanto, del riesgo de patologías cardiovasculares.

  • **Prevención de tumores**

    Se ha demostrado experimentalmente que el **inositol hexafosfato** (conocido como IP6) presente en la soja, el sésamo, el arroz y en algunos cereales, inhibe el crecimiento de las células tumorales en ratas.

    **B) Acción de las isoflavonas**

    Las **isoflavonas** son fitoestrógenos (**dadzeina**, **genisteína**) que están presentes en las semillas de soja y en sus principales derivados: harina, tofú y leche de soja.

    Además de la soja, existen otras plantas con un contenido importante en fitoestrógenos, tales como algunos tréboles, como el **Trifolium subterraneum** (que contiene genisteína), el **Trifolium pratense** (contiene dadzeina, genisteína).
Una vez que las isoflavonas son absorbidas en el tracto digestivo, se transforman en equol y desmetil-angolensina (formas más activas), siendo metabolizadas a nivel hepático y posteriormente excretadas en forma de 7-b-glucurónico (Adlercreutz H. et al., 1986).

Las propiedades terapéuticas otorgadas a las isoflavonas son las siguientes:

- **Aumento la actividad hormonal femenina**

La acción de las isoflavonas ha sido estudiada en relación con la prevención de cuadros asociados a la menopausia y con el desarrollo de algunos tumores (mama, próstata, colon, ovarios, endometrio).

Estadísticamente se ha demostrado, que en las poblaciones asiáticas, en cuya alimentación abunda la soja y sus derivados (ingieren unos 45 mg/día de isoflavonas), la menopausia aparece a una edad más tardía que en las poblaciones occidentales (ingieren menos de 5 mg/día de isoflavonas).

Parece ser que los fitoestrógenos de la soja, aun sin tener una estructura químicamente esteroidal, poseen afinidad por los mismos receptores que los estrógenos femeninos, por lo que son capaces de ejercer una suave acción estrogénica que, aunque menos potente que el estradiol, ha demostrado ser clínicamente capaz de incrementar la duración de la fase folicular del ciclo menstrual, por mantener una elevada concentración de estrógenos y reducir la de la progesterona.

Además, su consumo ha demostrado atenuar otros síntomas asociados a la menopausia, como los sofocos, por lo su empleo como alternativa a la tan polémica terapia hormonal ha sido muy valorada aunque aún le quede un camino por recorrer para que pueda ser utilizada con todas las garantías.
- **Prevención contra los tumores**

Se han llevado a cabo experimentos en los que se inyectaba genisteína en ratas, demostrándose una reducción de las lesiones precancerosas de colon de manera significativa (Bennink M. et al., 1996). Parece ejercer una acción inhibitoria sobre los protooncogenes inducidos por TPA (Wei H. et al., 1995) y, simultáneamente, se evidenció inhibición de la angiogénesis (Fotsis T. et al., 1993).

El **equol**, producto derivado del metabolismo de las isoflavonas, demostró poseer las siguientes propiedades:

- Induce la secreción de prostaglandinas PGF-2α por la pared endometrial, de forma similar al estradiol y, por otra parte, provoca una inhibición de las enzimas que provocan la destrucción de dichas moléculas (acción anti-aromatasa).

- Inhibe la acción de la enzima 17-beta-HO-dehidrogenasa, con lo que reduce la conversión de estrona en estradiol (Makela S. et al., 1995).

La **genisteína** es capaz de provocar una inhibición del crecimiento de células cancerosas de mama MCF-7, tras 1 día de incubación en cultivos experimentales y, transcurridos 6 días, se observó una disminución de la multiplicación nuclear característica de los fenómenos de apoptosis (Pagliacci M. et al., 1994).

A estas mismas conclusiones se ha llegado tras estudios estadístico realizados con 7999 hombres hawaianos que, durante unos 20 años, habían consumido semillas de soja, poniéndose en evidencia el descenso en el número de cánceres de próstata (Messina M. et al., 1994).
Aún así, el papel de la proteína de soja como factor protector contra cáncer de mama y de próstata se encuentra aún en proceso de investigación.

- **Prevención y tratamiento de la osteoporosis**

La osteoporosis es una enfermedad que aparece con cierta frecuencia asociada a la menopausia. Algunos estudios clínicos parecen demostrar la eficacia de las isoflavonas de la soja para frenar o prevenir su aparición (Arjmandi et al., 1996).

En experimentos con ratas en las cuales padecían una severa disminución de la densidad ósea como consecuencia de la extirpación quirúrgica de los ovarios, se comprobó que, tras la administración de genisteina, dicha disminución se veía frenada. Parece que se dicha sustancia es capaz de provocar una disminución de la actividad osteoclástica y, simultáneamente, un aumento de la actividad osteoblástica (Anderson J. et al., 1996; Fanty O. et al., 1996).

- **Disminución de la relación LDL/ HDL**

Muchos investigadores piensan el bajo índice de cardiopatías asiático se podría explicar por el elevado consumo de soja.

Las isoflavonas de la soja han demostrado disminuir las LDL y elevar las HDL en casos de elevación del colesterol sanguíneo que tienen lugar durante la menopausia (Anderson J. et al., 1995; Potter S. et al., 1996), en hombres (Nilausen K. and Meinertz H., 1996; Kurowska E. et al., 1996) y niños (Widhalm K., 1996).

Además, a la vez que provocan la disminución de las HDL, las isoflavonas parecen ejercer una actividad antioxidante sobre las HDL, lo que da lugar a una disminución de las enfermedades cardiovasculares (Wilcox G. et al., 1990; Wei

Por otro lado, todas las isoflavonas y en especial la genisteína, parecen inhibir la producir agregación plaquetaria (Schoene N. and Guidry C., 1996).

En la reunión anual sobre Enfermedad Cardiaca Coronaria (CHD), celebrada en Boston en 1997, con la participación de 80 doctores en Dietética, se expusieron los resultados obtenidos mediante estudios experimentales llevados a cabo con 750 personas voluntarias, en cuya dieta se incluyó un promedio de 47 gramos de soja texturada al día. Para ello, compararon los valores sanguíneos de colesterol de las citadas personas con los de otros 14 individuos prueba que seguían una dieta estándar de tipo occidental.

Entre los resultados de la población tratada con la soja texturada, observaron:
- Una disminución de un 12,9% en los niveles del LDL y un aumento de un 2,4% los niveles del HDL. Todo ello conlleva a la reducción de un 9,3% en colesterol total de la sangre, lo que da lugar a una reducción de entre un 18% y un 28% de riesgo de padecer una CHD.

Esto es algo específico de la soja, ya que otros productos dietéticos, como el salvado de los cereales, producen la disminución tanto de las LDL como de las HDL, siendo esta última mayor, lo que se traduce en un aumento del cociente entre ambos tipos de lipoproteínas y, por tanto, un incremento en los índices de colesterol.

Las isoflavonas de la soja, tienen propiedades antioxidantes, por lo que protegen a los LDL contra la oxidación y, por tanto, impiden la formación de la placa.
- Por otro lado, al contener azúcares de digestión lenta, se origina una reducción del 10,5% en los triglicéridos, cuya elevación de su concentración, también asociado al riesgo de enfermedades cardiovasculares.
- Además, se pudo comprobar que existía una respuesta diferencial al tratamiento con proteína se soja, ya que la disminución de los niveles de las LDL eran mucho más drásticas en pacientes que tenían el colesterol más alto, en las que originaron una reducción del 24%, que en los que previamente poseían unos valores sanguíneos de colesterol menos elevados, en las que la reducción fue menos drástica: de un 7,7%.

**C) Recomendaciones de empleo**

Se recomienda añadir proteína de soja a la dieta en los siguientes casos:

- Para las personas en la buena salud general se recomiendan unos 8-10 g de proteína de soja al día.
- Para las personas con diabetes, riesgo de CHD, osteoporosis o con antecedentes familiares de estas enfermedades, se recomiendan unos 16-20 g.
- Para las personas que padecen CHD o osteoporosis, se recomiendan unos 24-30 gramos de proteína de soja diarios.
- Durante la menopausia, como terapia hormonal sustitutoria y para reducir los procesos asociados, como la osteoporosis, se recomiendan unos 35-70 mg de isoflavonas totales, repartidos en dos tomas.
- También sería conveniente aplicar la dosis anterior de isoflavonas diaria en los casos en los que exista una hipertrofia benigna de próstata.
- Se recomienda el consumo de soja y derivados en las personas con hipertensión arterial por su bajo contenido en sodio.

**D) Efectos Adversos y/o Tóxicos**
En general, la soja y derivados son alimentos que se toleran muy bien. Sin embargo, hay que tomar una serie de precauciones a la hora de consumirlos:

- Si se toman brotes de sojas germinadas, dadas las condiciones de humedad a las que están sometidas, pueden desarrollar colonias de hongos, pseudomonas u otros microbios que podrían en peligro nuestra salud. Para evitarlo, se recomienda escaldarlas con agua hirviendo durante unos cinco minutos.

- Durante la germinación (como también ocurre con la cocción) se eliminan gran parte de las sustancias tóxicas naturales como hemoaglutininas, inhibidores de tripsina, saponinas, etc. Estas últimas no se absorben con el consumo de germinados de soja, en cambio con los germinados de alfalfa sí lo hacen, pudiendo generar en altas cantidades anemias hemolíticas como las observadas en ciertos animales. Es costumbre en países orientales el ingerir semillas maduras fermentadas, para así desnaturalizar la presencia de toxinas de sabor amargo que tienen cuando están crudas.

- Los fosfolípidos de la soja ocasionalmente pueden dar lugar a trastornos gastrointestinales tales como dolor de estómago o diarrea.
6. COMENTARIOS

Muchas personas son las que hablan en beneficio de un aumento del consumo de este producto, del que no dudamos de sus bondades. Sin embargo, es necesario matizar algunos puntos de vista respecto a la adopción de una dieta basada en la soja.

- Que no suplante el aceite de oliva y las legumbres típicas de la dieta mediterránea

En los últimos años se han hecho numerosos estudios sobre la bondad de seguir una dieta basada en la pirámide USDA (Departamento de Agricultura de los Estados Unidos, 1992)

![Pirámide USDA, 1992](image)

**Figura. Pirámide (USDA, 1992)**
Esta pirámide fue propuesta para los ciudadanos de EEUU con el objetivo de reducir el consumo de grasas saturadas, las cuales originaban un elevado riesgo de enfermedades coronarias.

En la base de la misma se sitúan los cereales ricos en hidratos de carbono complejos (pan blanco, arroz descascarillado o pastas), cuya ingesta se recomienda de 6-11 veces al día.

Sin embargo, estos alimentos aportan “calorías vacías”, que se descomponen con suma rapidez, produciendo un rápido incremento de los niveles de glucosa sanguínea, lo que estimula una continua secreción de insulina.

Debido a ello, la glucosa en sangre decae bruscamente acentuando el hambre, lo que contribuye a comer más y, como resultado de un modo de vida sedentario, puede desarrollar obesidad. Además, este exceso de la secreción continuada de insulina acaba desencadenando diabetes de tipo 2 en los pacientes genéticamente propensos a esta enfermedad.

Por otro lado, tras el metabolismo de los citados alimentos, se produce su transformación en triglicéridos, cuya concentración en sangre aumenta, incrementándose el riesgo de cardiopatías.

Walter c. Willett y Meir J. Stamfpfer, profesores de medicina de Harvard y de epidemiología y nutrición en la Escuela de Salud Pública de la misma ciudad, han elaborado otra pirámide alimentaria alternativa, que se espera esté completada para el año 2004.
Como vemos en la figura, la base de esta pirámide, a diferencia de la anterior, está ocupada por los alimentos ricos en grasas insaturadas y los cereales integrales. El aceite se soja, al igual que el de oliva, ocupan un lugar prioritario.

Por otro lado, el consumo de legumbres, entre las que se incluyen soja, garbanzos, judías, lentejas, etc. se recomienda de 1 a 3 veces diarias. Como dijimos antes, la ingesta de leguminosas provoca un descenso de los niveles de glucemia, porque contienen carbohidratos de digestión lenta, lo que evita los aumentos bruscos de los niveles de glucosa en sangre. Además, su elevado contenido en fibra dietética es la causa de que los carbohidratos se absorban en menor cantidad.
Conclusiones:

- No existen razones para sustituir el aceite de oliva por el de soja.

El contenido en lípidos totales y ácidos grados saturados, es similar en el aceite de oliva y el de soja.

En cuanto a los ácidos grasos insaturados, el aceite de oliva supera al de soja en monoinsaturados. Con los poliinsaturados ocurre lo contrario: el aceite de soja es mucho más rico pero que, por otro lado, la hace más propicia al enriquecimiento. Sin embargo, el pescado de la dieta mediterránea constituye una excelente fuente de ácidos grasos poliinsaturados, el aceite de oliva es más resistente al enriquecimiento.

- Tampoco existen razones para que la soja sustituya a nuestras legumbres tradicionales.

Ciertamente la legumbre de la soja tiene una mayor cantidad de proteínas, en relación con las legumbres de la cocina tradicional mediterránea. Sin embargo, las proteínas de los garbanzos y otras legumbres, no son nada despreciables, si las combinamos alimentos que las complementen, como el arroz que aporta el aminoácido esencial del que carecen (la metionina).

- Por otro lado, como vemos en las gráficas comparativas de la figura de abajo, el número de cardiopatías en los países nórdicos puede ser originado por el excesivo consumo de ácidos grados saturados. Sin embargo, comparando el riesgo de cardiopatías de un país oriental, con una ingesta muy baja en grasas, como es el caso de Japón, con otro cuya alimentación es típicamente mediterránea, basado en el consumo de aceite de oliva,
legumbres, verduras y pescado, como es el ejemplo de Creta, el riesgo de cardiopatías es mucho menor, a pesar de su mayor ingesta diaria de grasas.

**Las grasas y el corazón**

![Diagrama de comparación del riesgo de cardiopatías en Japón, Finlandia Oriental y Creta.](image)


La conclusión es que en nuestro país se debería potenciar el seguimiento de la dieta mediterránea y relegar los alimentos dietéticos, como es la soja, a un plano de consumo suplementario y preventivo en los casos en los que exista una deficiencia hormonal, unos índices elevados de colesterol o un riesgo de osteoporosis.

- **El empleo de soja transgénica**

Los debates sociales surgidos a consecuencia del empleo de transgénicos, unido a que la Legislación Española obliga a etiquetar con el indicativo “Producto Genéticamente Modificado”, obligación que no se hace extensiva a
los productos derivados, tales como la lecitina, ha hecho saltar las voces detractores, que cuestionan las bondades de este tipo de productos. Contra los embates del modelo transgénico, la solución pasaría por rescatar las formas tradicionales de producción de soja destinada a la obtención de alimentos básicos.

- **Otros problemas del consumo de soja**
  - La soja es uno de ocho alimentos responsables de la mayoría de alergias alimentarias, sobre todo las asociadas con la infancia.
  - Además, si existen personas con intolerancia de lactosa, otros que tienen intolerancia de la soja, ambas se deben a una deficiencia de la enzima adecuada para su digestión química.
  - Comienzan a aparecer pacientes que denuncian que el consumo de soja parece afectar a la función de la tiroides.
  - Aunque se trata de un efecto no demostrado, existe un estudio del Instituto de Investigación de la Salud del Pacífico en el que se relaciona el alto consumo de tofú con la debilidad cognoscitiva y con el desarrollo de la enfermedad de Alzheimer durante la vejez.

- **En resumen**

En Julio de 2002, el foro de Nutricionistas (Foro para un Plan de Alimentación y Nutrición) patrocinado por UNICEF y con la participación de distintas instituciones internacionales, entre las que se cuenta la FAO se concluyó lo siguiente:

"En cuanto al uso de la Soja, se recomienda puntualizar cuál es su real valor nutricional, su uso adecuado como complementación en el marco de una
alimentación variada y completa, y la recomendación de no denominar a la bebida obtenida de la soja (jugo) como "leche" [leche de soja], pues no la sustituye de ninguna manera. (...

(...)

(... es deficitaria en muchos nutrientes, y por su alto contenido de fitatos interfere en la absorción del hierro y del zinc; tampoco es una buena fuente de calcio. (...)

(... La utilización de soja debe contemplar el impacto ambiental y social, los requerimientos de capacitación para su adecuada utilización, la dificultad de su incorporación en el contexto de la cultura alimentaria y las consideraciones nutricionales que desaconsejan el uso en niños menores de 5 años y especialmente en menores de 2 años.

7. BIBLIOGRAFÍA

- MORENO, Ana , Qué tendrá la soja ...cuando todos hablan de ella...... Ed. Mandala. Madrid 2002.
- MORENO, Ana , Qué tendrá la soja ...cuando todos hablan de ella...... Ed. Mandala. Madrid 2002.
- WALTER C. Willett y MEIR J. Nueva pirámide de alimentación. Investigación y Ciencia (páginas 54-61) . Marzo 2003
- "Soja", Enciclopedia Microsoft(R) Encarta(R) 98. (c) 1993-1997 Microsoft Corporation.
- Reunión de Boston de 1997.


Copyright 1998